THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Solution of Tutorial Classwork 1

- (a) Suppose X is separable. By definition, there exists a countable dense set D such that D = X. Since D is countable, X\D is an open set. Hence D is a closed set and D = D. However this leads to D = D = X. Since X is uncountable, this leads to contradiction. Hence X is not separable.
 - (b) Assume that the cocountable topology is C_I . Pick any $x \in X$. There exists a countable local base $\{U_n\}_{n\in\mathbb{N}}$ at x. By definition, $X \setminus U_n$ is countable. Hence $\bigcup_{n\in\mathbb{N}}X \setminus U_n = X \setminus \bigcap_{n\in\mathbb{N}}U_n$ is also countable. This shows that $\bigcap_{n\in\mathbb{N}}U_n$ must be an uncountable set. Pick any $z \in \bigcap_{n\in\mathbb{N}}U_n$ and $z \neq x$. Consider the open set $X \setminus \{z\}$. Clearly we have $x \in X \setminus \{z\}$. Furthermore, since $z \in \bigcap_{n\in\mathbb{N}}U_n$, we have $U_n \not\subset X \setminus \{z\}$ for all $n \in \mathbb{N}$. This contradicts with the fact that $\{U_n\}_{n\in\mathbb{N}}$ is a local base at x.
- 2. (a) To show that B is a base, we have to check:
 - For any $x \in X$, there exists some element $D \in B$ such that $x \in D$;
 - For any $U, V \in B$ and any $x \in U \cap V$, there exists $W \in B$ such that $x \in W \subset U \cap V$.

It is clear that $x \in (x - 1, x + 1)$ for any $x \in \mathbb{R}$. Next, pick any $U, V \in B$ and $x \in U \cap V$.

i. If U = (a, b) and V = (c, d) such that a < c < b < d, then we have

$$x \in (c,b) \subset (a,b) \cap (c.d)$$

ii. If U = (a, b) and $V = (c, d) \setminus K$ such that a < c < b < d, then we have

$$x \in (c,b) \backslash K \subset (a,b) \cap (c.d) \backslash K$$

iii. If $U = (a, b) \setminus K$ and V = (c, d) such that a < c < b < d, then we have

$$x \in (c,b) \backslash K \subset (a,b) \backslash K \cap (c.d)$$

iv. If $U = (a, b) \setminus K$ and $V = (c, d) \setminus K$ such that a < c < b < d, then we have

$$x \in (c,b) \backslash K \subset (a,b) \backslash K \cap (c.d) \backslash K$$

As a result, B is a base.

(b) To show that $T_l \not\subset T_K$, note that the interval $[0,1) \in T_l$ and $0 \in [0,1)$. However, if I is an element in B containing 0, we have I = (a,b) or $I = (a,b) \setminus K$ where a < 0 < b. In both cases, we have $\frac{a}{2} \in I$ and $I \not\subset [0,1)$. So $[0,1) \notin T_K$.

To show that $T_K \not\subset T_l$, note that the interval $(-1,1) \setminus K \in T_K$. However, if I is an elements in the base of lower limit topology containing 0, we have I = [a, b) for some $a \leq 0 < b$. In particular, $\frac{1}{n} \in I$ for sufficiently large n and $I \not\subset (-1,1) \setminus K$. So $(-1,1) \setminus K \notin T_l$. 3. (a) (⇒) Let x ∈ A = A ∪ A'. If x ∈ A, then for any U ∈ ℑ with x ∈ U, we have x ∈ U ∩ A and hence U ∩ A ≠ Ø. If x ∈ A' and x ∉ A, by definition of A', for any U ∈ ℑ with x ∈ U, we have U ∩ A \{x} ≠ Ø. Since x ∉ A, we have U ∩ A = U ∩ A \{x} ≠ Ø.
(⇐) Conversely, assume that for any U ∈ ℑ with x ∈ U, we have U ∩ A ≠ Ø. If x ∈ A, then

(\Leftarrow) Conversely, assume that for any $U \in \mathfrak{T}$ with $x \in U$, we have $U \cap A \neq \emptyset$. If $x \in A$, then we are done. If $x \notin A$, then for any $U \in \mathfrak{T}$ with $x \in U$, we have $U \cap A \setminus \{x\} = U \cap A \neq \emptyset$. Hence $x \in A'$.

- (b) It follows easily by (a).
- (c) Suppose A is open. Then $X \setminus A$ is closed. Hence

$$\overline{A} \setminus \operatorname{Frt}(A) = \overline{A} \setminus (\overline{A} \cap \overline{X \setminus A}) = \overline{A} \setminus (\overline{A} \cap (X \setminus A)) = (\overline{A} \setminus \overline{A}) \cup (\overline{A} \setminus (X \setminus A)) = \overline{A} \cap A = A$$

Conversely, suppose $A = \overline{A} \setminus \operatorname{Frt}(A)$. Pick any $x \in A$. Since $x \notin \operatorname{Frt}(A)$, there exists $U \in \mathfrak{T}$ with $x \in U$ such that $U \cap A = \emptyset$ or $U \cap (X \setminus A) = \emptyset$. Since $X \in U \cap A$, we must have $U \cap (X \setminus A) = \emptyset$. This implies that $x \in U \subset A$. Hence A is open.

- (d) Suppose $x \in \text{Int}(A)$. This implies that there exists $U \in \mathfrak{T}$ such that $x \in U \subset A$. In particular, we have $U \cap (X \setminus A) = \emptyset$. So $x \notin \text{Frt}(A)$.
- (e) (⇐) Since A is closed, we have A = A. Since A is open, X\A is closed and we have X\A = X\A. Hence Frt(A) = A ∩ X\A = A ∩ (X\A) = Ø.
 (⇒) Pick any x ∈ A. Since x ∉ Frt(A), there exists U ∈ ℑ containing x such that U ∩ A = Ø or U ∩ (X\A) = Ø. Since x ∈ U ∩ A, we must have U ∩ (X\A) = Ø. Hence we have x ∈ U ⊂ A. This shows that A is open. By (c), we have A = A\Frt(A) = A. Hence A is also closed.
- (f) Consider $A = [0,1] \cap \mathbb{Q}$. Note that $\overline{A} = [0,1]$, $\overline{\mathbb{R} \setminus A} = \mathbb{R}$. Hence $\operatorname{Frt}(A) = \overline{A} \cap \overline{\mathbb{R} \setminus A} = [0,1]$ and $\operatorname{Frt}(\operatorname{Frt}(A)) = \{0,1\}$. Clearly we have $\operatorname{Frt}(A) \neq \operatorname{Frt}(\operatorname{Frt}(A))$.